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Abstract—We define a new structural property of large-scale
communication networks consisting of the persistent patterns of
communication among users. We term these patterns “persistent
cascades,” and claim they represent a strong estimate of actual
information spread. Using metrics of inexact tree matching, we
group these cascades into classes which we then argue represent
the communication structure of a local network. This differs from
existing work in that (1) we are focused on recurring patterns
among specific users, not abstract motifs (e.g. the prevalence
of triangles or other structures in the graph, regardless of
user), and (2) we allow for inexact matching (not necessarily
isomorphic graphs) to better account for the noisiness of human
communication patterns. We find that analysis of these classes
of cascades reveals new insights about information spread and
the influence of certain users, based on three large mobile phone
record datasets. For example, we find distinct groups of weekend
vs. workweek spreaders not evident in the standard aggregated
network. Finally, we create the communication network induced
by these persistent structures, and we show the effect this has
on measurements of centrality.

I. INTRODUCTION

A natural question to ask in the study of communication
in social networks is: do social networks exhibit a recurring
pattern of information spread? In this paper we propose
methods which indicate the answer may be yes. Specifically,
we present a method of extracting what appear to be the under-
lying communication structures from the “noisy” information
available in large-scale datasets.

We focus our attention on mobile phone records, also termed
call detail records (CDRs), because they provide a unique
opportunity to study the large-scale, unfiltered communication
patterns of individuals among their friends. Unfortunately, this
breadth of knowledge — in time, space, and demographics —
comes at the expense of depth, since we have no information
about the purpose or content of communication as we might
in social media or email records. Our approach attempts to
solve this problem by finding persistent patterns that strongly
imply meaningful communication is taking place.

A. Related work

A standard approach to translate raw communication data
into a meaningful network is to aggregate user activity over
some time period T (e.g. a week or month) into a static
graph. For example, we can require that a call is reciprocated
to consider two users social contacts (and assign them an

edge) as in [21], and choose T such that it gives some stable
representation (see [11]).

An alternative approach is to include temporal knowledge,
an interpretation broadly called temporal networks ([9]), which
often improves our understanding of structure and community
both at an aggregate and individual level. For example, in [19],
they observe that the change in a user’s frequent contacts over
time adheres to an apparent upper bound, or social capacity,
that stays relatively constant for a user even as his/her contacts
evolve.

The temporal approach seems especially appropriate in
the study of information spread, which is by nature causal
and time-dependent. Strong properties of human interaction
have emerged by including temporal information. One such
is the property of “burstiness” — that is, people tend to
communicate in short, active bursts followed by long periods
of inactivity. The tendency for non-Poissonian, heavy-tailed
inter-event communication times has been observed in many
contexts (for example, [27] studies email virus propagation,
[4] mobile phone communication, and [8] both mobile phone
and email), and shown to slow diffusion dynamics ([7], [24])
except under certain conditions ([18]).

A critical question in the study of information spread in
temporal networks is determining what (or if) information is
being spread during an observed communication event: is this
call/email/tweet random, social, information-related, etc. In
datasets like social media posts or email the answer is usually
obvious from the text content; for example, using Twitter hash-
tags as in [13], [15], [6]. However, in data like CDRs where we
only have the metadata of each event, a solution is not obvious.
In [1], they contrast the calling patterns immediately following
an emergency (bombing, earthquake) with the rest of the call
events, and find systematic differences in the timing and spread
of information. The implication is that we are more sure “real”
information spread is occurring following an emergency, and
therefore the contrast of patterns between this spread and what
we infer through a standard aggregated approach indicates the
latter is an inaccurate estimate.

This type of “cascading” information spread — i.e., a
single user initiating a call to a few contacts, who then call
several more, and so on — is of great interest in answering
our question of the communication event’s purpose, since
(broadly), a cascade implies non-random, or causal, action (see
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[3], [6], [13], [15], [25] and others).
We can make an even stronger claim to the meaningfulness

of a particular observed communication pattern, if we see
the pattern repeated again and again over time. One area of
research in this theme is searching for frequent structures, or
“motifs,” in the temporal network (independent of the specific
users involved). In temporal networks this amounts to a
recurrent, isomorphic, time-respecting subgraph. For example,
[14] analyzes cascade motifs in blog posts and reposts, and
[29] analyzes frequency of communication motifs in both CDR
and Facebook wall post data. Subsequent works have presented
increasingly robust and efficient frameworks for identifying
and analyzing these recurrent temporal subgraphs ([2]), often
using a comparison to some null model ([10]).

B. Contributions

In this paper, we propose a method for extracting the
recurrent patterns of information spread among users in a
social network. This extends previous work by incorporating
the idea of similarity (rather than isomorphism), and by
considering user-specific patterns (rather than abstract motifs
like a chain or triangle). We call the patterns persistent
cascades, and claim that they represent a strong estimate
of the meaningful, underlying communication structure of
their local social network. We show that analysis of the
persistent cascades bolsters previous work like burstiness and
social capacity, and also leads to new insights like a habitual
hierarchy among friends in information spreading and the
existence of weekday- or weekend-only tendencies in some
communication patterns. We also contrast the centrality of
users using a static approach against a network weighted with
the persistent cascade structures.

The paper is organized as follows. In Section II, we define
a cascade, present two similarity measures to measure persis-
tence, and introduce a cascade-weighted network using these
structures. In Section III, we analyze the persistent cascades
and classes and contrast the centrality of users inferred from
a standard aggregated network against the cascade-weighted
network. Section IV summarizes our findings and presents
avenues for future work.

II. METHODS

Consider an observed pattern where user A calls users B and
C, who then call users D, E and F, and then we observe this
same pattern, or something similar, repeated every few days
or weeks. We term these persistent cascades, and claim the
pattern leads to two very reasonable assumptions: (1) it is more
likely that calls in a persistent cascade indicate meaningful
social interactions than calls not observed in one, and (2)
it is highly likely that persistent cascades correspond with
information spread. We seek to define, find, and analyze these
patterns.

A. Defining a cascade

Consider a temporal graph G = (V,E) which represents
the communications between users over some large time

period T = [tbegin, tend], such as one month. Let each node
v ∈ V represent a user who participates in some number
of communication events during period T , and let each edge
e ∈ E represent a communication event which we encode as
a 4-tuple ei = (si, di, ti, δi) consisting of the initiator (si), the
receiver (di), the time of the event (ti), and its duration (δi).

We define a time-respecting path as any sequence of edges
(e1, e2, ..., ek) such that for any consecutive pair ei, ej in
the sequence, we have that di = sj and ti + δi ≤ tj . We
define a ∆t-connected path as a time-respecting path such that
tk − t1 ≤ ∆t. From these definitions, one can construct ∆t-
connected subgraphs that contain some time-respecting subset
of all the events within ∆t (e.g. [10]).

However, in pursuit of understanding information spread
patterns, we make an assumption that the information orig-
inates from a single user, and every user receives the infor-
mation at the earliest possible time. This implies there is a
single in-edge to each user, and creates a rooted, directed tree
structure. Intuitively, this shifts focus from the structure of
the call patterns to the structure of the information spread,
since we will only capture the first occurrence of “information”
being passed.

Formally, this assumption leads to the construction of a
rooted, directed, ∆t-connected tree which we term a cascade.
This term, and its construction, follows closely that in [24].

Denote a cascade with root r as Cr, denote the set of
all cascades for root r with maximum time interval ∆t and
total time period T as Cr(T,∆t), and use superscripts as
necessary to distinguish multiple cascades with the same root.
For example, we might have the set of all cascades for some
root a:

Ca(T = 1 mo, ∆t = 24 hrs) =
{
C1

a , C
2
a , C

3
a

}
(1)

Note we require that the intervals not overlap: i.e. no calls
from C1

a can also be in C2
a , etc.

An example of cascade construction from a network with
all temporal information is shown in Figure 1

We make two notes about this definition before proceeding.
First, notice that for any cascade, its subtrees are also (usually)
cascades. For example, in Figure 1, note that the cascade with
root a has a subtree corresponding to the cascade with root
b. This is by design: we do not know the true information
originator, so we should consider each possible “root” user in
his or her own right in the analysis of persistence that follows.

Second, consider a root node who is very consistent in
the users he calls, but these users are then subsequently very
inconsistent. Then the overall cascades generated from this
root will be dissimilar, and therefore ignored in the subsequent
analysis. This is again by design: we are concerned with
persistent information spread, not just consistent calls from a
particular user to certain friends. Cascades that are only similar
in the first level do not indicate the root is a strong originator
of information.
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Fig. 1. Simplified illustration of cascade extraction from a temporal graph. For clarity, we examine a network with only 6 nodes. (a) Full temporal information
(∆t = 6 units, times depicted on edges). (b) Three valid cascades given this temporal snapshot. Note that there is no time ordering of children within a
cascade. (c) Invalid cascade because: (c-b-e) is not a time-connected path, and missing the edge (c-f).
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B. Similarity measures

Measuring similarity of cascades, as defined, is an inexact
tree matching problem. We now define two similarity mea-
sures, both standard in the literature: normalized tree edit
distance, and reach set similarity (measured with a Jaccard
index).

a) Tree edit distance: Edit distance is the process of
counting the minimum number of insertions, deletions, or
mutations required to transform one string into another. One
can extend this concept to trees. Denote the tree edit distance
between two trees (or cascades) C1 and C2 as TED(C1, C2),
which maps two cascades to a nonnegative integer. As an
example, consider the following two trees :

C1 : C2 :

a

b

d e

c

f

a

b c d

f

To change C1 into C2, we can delete d and e, mutate c into
d, and add c again, giving TED(C1, C2) = 4 (note this is the
same to change C2 into C1).

A canonical algorithm for computing this distance is due
to Zhang and Shasha ([28]), which we implement with the
zss package available at [5]. We can now define a similarity
measure using this distance as follows.

Definition 2.1: Tree Edit Distance similarity. Define the
normalized tree edit similarity as

sTED(C1, C2)
def
= 1− 2 · TED(C1, C2)

|C1|+ |C2|+ TED(C1, C2)
. (2)

and note sTED lies on [0, 1].
This definition is due to [16], who also prove that the

corresponding distance metric 1 − sNTED meets the triangle
inequality. Note we make every edit operation unit cost.

Using the example trees above, we now compute sTED =
1− 2·4

6+5+4 = 7
15 ≈ 0.47.

b) Reach set: Consider the un-ordered set of all nodes
in a tree. For a cascade, this corresponds to all users who
the root reached during the time period ∆t, and potentially
received some information. We term this the reach set of a
cascade (similar to concepts in [15], [23]).

A simple first approximation of the similarity of two cas-
cades is by comparing their reach sets. Let R(Ci) denote the

reach set of a cascade Ci. Now, given two cascades C1 and
C2, define the similarity measure sRS as the Jaccard index of
the two reach sets, that is

Definition 2.2: Reach Set similarity. Given two cascades C1

and C2, and their reach sets R(C1) and R(C2), define

sRS(C1, C2)
def
=
|R(C1) ∩R(C2)|
|R(C1) ∪R(C2)| . (3)

and note sRS lies on [0, 1].
Continuing with the previous example, we have

sRS(C1, C2) = 5
6 ≈ 0.83.

C. Persistence

We now would like to group cascades together which all
share some minimum pairwise similarity, and so are in a
relaxed (but well-defined) sense the “same cascade.” This
group now represents various incarnations of some fundamen-
tal communication structure. We call these groups persistence
classes, and the elements of each group persistent cascades,
and they are the main object of our analysis.

Definition 2.3: Persistence class. Define the i-th persistence
class of root r, similarity threshold ` in time period T over
intervals ∆t, as the set

Pi
r(`, T,∆t) =

{
C1

r , C
2
r ∈ Cr(T,∆t) : s∗(C1

r , C
2
r ) ≥ `

}
(4)

and the collection of all persistence classes for a particular
root as Pr(`, T,∆t).

Definition 2.4: Persistent cascade. Define a persistent cas-
cade as any cascade Ci

r such that Ci
r ∈ Pr(·), for some r.

Note we may also choose to ignore any persistence classes
below a certain size. The minimum size is 2 by construction,
but we may decide based on the parameters T and ∆t that a
minimum size of 3 or more is appropriate.

To find these classes, our definition and Eq. (4) leads us di-
rectly to an agglomerative clustering approach with complete-
linkage — that is, define the similarity between two clusters
U and V as s(U, V ) = min s∗(Ui, Vj),∀i ∈ U,∀j ∈ V where
Ui, Vj represent cascades within U and V . Then the clusters
at iteration k, such that every pairwise similarity within the
cluster is ≥ sk, represent persistence classes with ` = sk.

However, this assumes that each cascade falls uniquely
into one class, which we can imagine is not always true: a
spreading pattern among work friends may overlap with the
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Fig. 2. Actual set of cascades for a root a over a 60-day period. Six persistent cascades are shown, each from temporal subgraphs with ∆t = 24 hours.
Dotted rectangles depict the persistence class groupings. We see a clear set of “core friends” (nodes b, c, d), and slight variations incorporating other groups.
We also see the overlap that occurs when a cascade appears to fit in multiple classes. Labeled above each cascade is the day of the week.
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pattern among social friends, and there may be cascades that
are not clearly in one class or the other.

So we instead adopt a graph-theoretic interpretation of the
complete-linkage approach: represent each data point (cas-
cade) as a vertex in a graph H(sk) such that each any two
vertices with similarity ≥ sk are connected. Then the clusters
at iteration k correspond to the maximal completely connected
subgraphs in H , also known as the maximal cliques. [17]

Now, applying this technique, consider the collection of
persistence classes Pa depicted in Figure 2, taken from City
A. Here, we see a core pattern consisting of root a calling
b, c, and d, captured in P2

a . Then, we see two variations on
this core structure: P1

a which incorporates e, and P3
a which

incorporates f and g. Since they are mostly weekend calls, we
might easily imagine this being a core group of social friends,
with variations possibly for family or work acquaintances.

We make two notes on our methodology of identifying per-
sistence. First, we are only doing pairwise comparison between
cascades which share a root node, leaving out groupings such
as different initiators who disseminate information to the same
people. It has the effect of maintaining focus on analysis of the
roots, instead of the broader role or persistence of a cascade
pattern itself. Second, note that it is conceivable that unrelated
call events could happen consistently in the same order among
the same people and get picked up mistakenly as persistent.
Not knowing the actual content of the calls, we can only say
that persistence, as defined, indicates a very high likelihood
of information spreading.

III. RESULTS

a) Data: The datasets are CDRs from three cities and
their greater metropolitan area: two mid-size European cities
(City A and City B) and one Central American city (City C).
The data consist of caller, callee, and time stamp for each
phone call or SMS event recorded by the carrier. (Location
information is also recorded, but not used in this study.)

For a given month, in City A, there are about 280k
(280×103) unique users, making a total 5.8 million call/SMS
events. City B has about 212k unique users making 3.9 million
call/SMS events. City C sees about 1.7 million unique users
each month, making 154 million call/SMS events. Of all
unique users, the fraction who initiate at least 3 cascades to
at least 2 other users varies somewhat by region: City A and

City B have about 30-35% meeting this criteria (98k and 72k,
respectively), while City C has about 65% (1.1 million). This
may be due to the City C dataset being more recent, and so
there is an overall higher level of mobile phone activity.

Fig. 3. Distribution of call times and duration among persistent cascades.
The left plot shows the distribution of times for the first (i.e. earliest) and last
(latest) calls in a cascade. The right plot shows the resulting distribution of
total duration of a cascade.
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A. Cascade size, time and duration

We find that most persistent cascades (e.g. 71% of the sam-
ple in City A) are among 3 contacts (the minimum necessary to
constitute a cascade). The largest persistent structures involve
20-30 people (for example, in City A, we find a persistent class
with cascades of 37-39 users, but note persistent cascades with
more than 6 people constitute less than 1% of the sample).

Figure 3 shows the distribution of first and last call times in
a (persistent) cascade, and the resulting distribution of cascade
durations. This was done on a random sample of 104 root users
in all 3 cities over a period of 1 month. The call times follow
the expected workday pattern of a morning peak around 9-10
a.m., and another peak before nightfall around 8 p.m.

We also see from the right plot in the figure that most
persistent cascades are very short — usually everyone is called
within an hour — which echoes earlier work on the burstiness
of communication. There is also a large group of cascades with
durations between 5-10 hours, suggesting information spread
is either very rapid, or unfolding over a morning or afternoon,
but rarely lasting all day.
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This evident short attention span in the cascades led us to
avoid analysis of longer time periods (48, 72 hours or longer).
Longer time periods also may decrease the possibility of the
cascade representing information spread. It may be fruitful to
consider a shorter interval, such as 12 hours, to attempt to
capture morning vs. evening cascading action (e.g. work vs.
social), or a sliding window approach. We leave exploration
to future work.

Fig. 4. Heat map depicting the correlation between NTED and RS metrics on
a sample of 5×104 pairs of cascades with the same root (over approximately
104 different roots). The number of pairs where sRS(x, y) = 1.0 but
sTED(x, y) < 1.0 is surprisingly small — only about 0.5% of the sample
— suggesting that cascades among the same users tend to occur in the same
order. Note: the colors are log-scaled for visualization.
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B. Similarity measure correlation and habitual hierarchy
We now examine the relationship between the two similarity

measures introduced in Section II: tree edit distance (TED) and
reach set (RS). Based on a random sample of 5×104 pairs of
cascades from City B, the measures have a Pearson correlation
coefficient of ρ = 0.91. (Results are similar in other datasets.)

It is possibly surprising that the correlation is so high. For
example, consider the group of cascades with sRS of 1.0 and
sTED less than 1.0, and note that this group represents less
than 0.5% of the sample. This shows that when two cascades
involve the same people, they nearly always involve them in
the same order. (And if not, we would see more pairs with
dissimilar structure (low TED) but similar reached users (high
RS).) This observation suggests there is a habitual hierarchy
of information spread among social contacts.

Note: the main performance bottleneck in computing all
persistence classes for a particular dataset is the TED measure.
However, the correlation between measures shows RS is a
close approximation in most cases. It is also much easier to
compute; so, if computing P∗ under both measures, one can
compute RS similarity first, and only compute TED similarity
as necessary for sRS above some low threshold. Finally, since
we are only considering classes with the same root, the
clustering step is parallelizable. Using these speedups, we
could build all persistence classes for a single city, with both
similarity measures and T = 1, in about 30 minutes.

C. Tendency for weekday vs. weekend information spread
Consider the set of all cascades (not necessarily persistent)

that a given (root) user initiates in the course of some period

T , for example a month. Since most active users tend to make
some calls every day, we might expect these cascades to be
evenly distributed over each day of the week.

In Table I we examine all cascade initiators in each city with
at least one persistent class and at least 3 persistent cascades.
If we consider all cascades of this group (not just persistent
ones), we see that there is an even mix throughout the week,
as expected: nearly all users are generating cascades (that is,
making calls to multiple people) on some mix of both weekend
and weekdays. Very few users (< 1%) are active exclusively
on weekdays and/or weekends.

TABLE I
DISTRIBUTION OF ROOT NODES BY TIME OF CASCADE: PERSISTENT

CASCADES REVEAL A TENDENCY FOR WEEKEND OR WEEKDAY
INFORMATION SPREADING

Cascade type Dataset Only Weekend Mix Only Weekday

All
City A <1% 99.2% <1%
City B <1% 99.4% <1%
City C <1% 99.8% <1%

Persistent
City A 1.8% 82.5% 15.6%
City B 2.6% 83.8% 12.9%
City C 2.5% 84.2% 13.3%

Note. “Only” weekend/weekday signifies at least 90% of events. Fridays designated as the weekend.

However, if we examine only persistent cascades, two new
groups emerge: a large portion of root users who only initiate
persistent cascades on weekdays, and a slightly smaller portion
who only initiate on weekends. These two extremes constitute
over 15% of all root users, while the same extremes measured
in all cascades are < 1%. This is a complement to the
observation that people have different mobility similarities to
weekend and weekday contacts, in [26].

In other words, for these two groups, although they make
calls throughout the week, their role in spreading information
appears to be specialized: their only persistent patterns of
information spread happen during either weekday (i.e., work
week) hours or weekend hours, but not both. Their other
communication is sporadic, or random, and one might easily
conclude, not meaningful.

D. Long-term persistence

Now we turn our attention to observations of the persistent
structures over longer periods of time (T > 1 month). One
intuitive property we expect to see emerge is the idea of long-
term persistence. Specifically, if the persistent classes represent
the fundamental underlying communication structure of the
network, we expect them to persist over long periods of time
— that is, user’s should continue to generate cascades which
“fit” into existing classes.

First, in Figure 5(a), note the decline in the distribution of
persistent classes as we increase the minimum size require-
ment (i.e., for a user a, enforce that |Pi

a(·)| ≥ k, for all i,
and increase k = 2, 3, 4, ...). This is an expected effect of
increasing requirements within a finite time. For a minimum
size of 4 cascades, only about a tenth of the population has
even one persistent class.
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If there were no long-term persistence of these classes,
then we would see no class growth over time, and the
distributions of persistent classes would decline as we increase
their minimum size requirement, regardless of the time period.

However, in Figure 5(b), the opposite happens. As we
increase the time period and the minimum size requirement,
the distribution of persistent classes increases somewhat and
stays generally the same, especially for the 90% of the
population with 3 or fewer classes. This implies that our
intuition is correct, and many (if not most) of the persistent
classes continue to grow as time goes on.

We can also be more precise by checking, for example, how
many specific users with 1 persistent class after 1 month, still
have 1 persistent class after 2, 3, 4, and 5 months, etc. We
find that about 65% of users with a single persistent class
(of size ≥ 5) after 3 months of observation, will still have
a single persistent class (now of size ≥ 6) after 4 months
of observation. And about 71% with a single class after 4
months will again have a single class (now of size ≥ 7) after 5
months. This is remarkable consistency, and suggests a strong
predictability of calling habits.

Fig. 5. Distributions of the proportion of users by their # of persistent classes.
In (a) we increase the requirement for persistence but fix T . In (b) we increase
the requirement for “persistence” from 3 to 7 cascades in the class as we
increase T from 1 to 5 months. (Excludes the top 1% of users.) Note that
(a) demonstrates an expected finite-time effect, but in (b) the distributions are
nearly identical, especially for users with 0-2 classes (who constitute over 90%
of the sample), suggesting long-term persistence and bounded social capacity.
(The black plot depicts the average over 5 samples of 5× 103 random users;
samples depicted in light green.)
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E. Cascade-weighted network

Now consider applying this knowledge of persistent struc-
ture back to a static structure, and observing the effect on, in
particular, centrality. Specifically, for a network G = (V,E),
weight the subset of edges EC that are present in at least one
persistent cascade with wc = α ∈ [0.5, 1] and all en ∈ E \EC

with wn = 1−α. Now with α = 0.5 we recover the standard
aggregated network, and with α > 0.5 we are putting extra
weight on the “persistent” edges which we claim carry more
meaning.

This results in a network of about 278k nodes and 505k
edges, with about 45k users having at least one persistent
class of 2 or more cascades (counts are for City A). Setting
α in [0.5, 1), we find a Large Connected Component (LCC)
comprising 80-85% of the total network for all three datasets
(cf. [21]). With α = 1, the LCC splits into several thou-
sand smaller subgraphs, the largest usually being about 2k
nodes. This echoes previous results that show the inability
of information to reach any sort of macroscopic diffusion
when traveling solely through information cascades [24], and
one could consider it another version of the general result of
slowed diffusion in temporal networks [7].

We now consider the weighted degree (or node strength
[20]) of a user i, defined ki =

∑
j Aij , where A is the

adjacency matrix of G and Aij = wc if (i, j) ∈ EC , wn

if (i, j) ∈ E \ EC , and 0 otherwise. We examine a 1-month
time period in City A, for both the unweighted (i.e., α = 0.5)
and cascade-weighted (α > 0.5) networks. We use the sTED
measure for this analysis, with ` = 0.8. We observe the effects
of the weighting in Table II, which presents the overlap of
central and non-central users for both networks as measured
by degree, when α = 0.5 against when α = 0.9.

We note several groups that emerge: first, the large group
of users (about 7% of the total users) that are only central
in the cascade-weighted network. This suggests a group of
users with unremarkable importance as measured in a naı̈ve
way by counting calls, but who play a pivotal role in the
persistent communication patterns of their social network.
Similarly, a large group of influential users in the standard
unweighted network disappears when we begin weighting
cascades, implying their centrality was only due to a web
of edges corresponding to mostly random calls. And lastly,
we note that a large portion of the network has their status
essentially unchanged.

TABLE II
CONTRAST OF TOP RANKED USERS (BY DEGREE) IN THE STANDARD
UNWEIGHTED VS. CASCADE-WEIGHTED NETWORK. USERS IN BOLD

(6.6% OF TOTAL POP.) ARE HIGHLY CENTRAL IN INFORMATION SPREAD,
BUT ARE UNNOTICED USING A STANDARD APPROACH.

Weighted
ki (degree) rank Bottom ranked Top ranked

Unweighted
Bottom ranked 195,248 (83.9%) 15,357 (6.6%)

Top ranked 18,020 (7.7%) 10,261 (4.4%)
* Bottom rank = lower 90% of users, top rank = top 10% of users
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Fig. 6. Example central users in the (left) unweighted network and (right)
cascade-weighted network. User of interest depicted as black nodes, all others
as blue. Edges present in a persistent cascade depicted in black.

IV. CONCLUSION AND FUTURE WORK

In this paper we introduced a novel way of estimating
the real communication structure of a social network, called
persistent cascades, using methods of inexact tree matching
and agglomerative clustering. This approach extends existing
work by keeping focus on individuals (instead of motifs)
and allowing a relaxed sense of similarity (instead of iso-
morphism). We showed that these persistent structures tend
to be “bursty” and follow circadian patterns, in line with
previous work. We observed that the high correlation of
structural- and user-centric metrics implied a habitual hier-
archy in communication. We discovered a tendency for day-
of-the-week-specific information spreading among about 25%
of the population that is completely hidden using standard
methods. We demonstrated the long-term persistence of these
structures, over a period of several months, and the bounded
social capacity this implies. Finally, we introduced a cascade-
weighted network and revealed a group of about 6-7% of the
population that is highly central in persistent communication,
and thus stand-outs in the weighted network, but insignificant
using a standard approach.

We expect there is potential in coupling these insights
of communication structure with the knowledge of mobility
that we get with many datasets; for example, do we find
high similarity of mobility patterns [26] of users within most
classes? Do information spreaders exert observable influence
on their social contacts’ movement habits? We also hope to
examine the effect the cascades have under a diffusion model.

In conclusion, we hope this paper contributes a new method
of understanding the persistent patterns of human communica-
tion in large-scale networks, and that in future work we may
be able to extend this to a deeper understanding of the dy-
namics of centrality and information spread in communication
networks in the urban space.
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