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Problem Statement

Central question

How can we identify and model the structure of influence in a
communication network?

We are interested in who influences who, not necessarily just who contacts who, as
measured through observation of interpersonal communication.

For example, if A talks to B, does that increase the probability that B will talk to C?
How can we identify and model these relationships from large-scale communication
data?

Applications: di�usion, influence maximization, social learning, centrality, ...
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The Challenge

Large-scale communication metadata gives us little/no knowledge of
content (e.g. mobile phone data) — so how do we determine which
events represent “meaningful” interactions?

Approaches we might try...
Edge-weighting

Observing post-emergency

Frequent subgraphs

Learning probabilistic
structure
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Background

Based on previous findings, we would like a model which can capture temporal clustering,
information cascades, and an interpretable influence structure.

We adopt a multidimensional stochastic process called the Hawkes process, a flexible model
with all these traits.

The Hawkes process also has applications in a wide variety of fields:

Stock price fluctuation (Hawkes [1])
Earthquake activity (Veen & Schoenberg [8])
Gang violence (Stomakhin, Bertozzi et al. [6])
Neuron impulses in the brain (Linderman & Adams [3])
Social networks (Zipkin et al. [11])
Trend detection (Pinto et al. [5])
Product adoption (Valera, Gomez-Rodriguez [7])

which gives us a rich literature of techniques to draw on.
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Definitions I

The Hawkes process (HP) is a point process defined by a conditional intensity with a
background rate and additive, decaying impulses from previous events. It can be extended
to multiple dimensions (or streams).

Hawkes process

A sequence of events τ = {(ti, ui)}ni=1, consisting of a time ti and
dimension ui, with ti ∈ R+ and ui ∈ U = {1, 2, ...,U}, is a Hawkes process
if the conditional intensity function has the form

λu(t; Θ) = µu +
∑
i:ti<t

huui(t − ti; θuui)

where Θ = (µ, θ) are the model parameters, and H = [hij],
h∗(t) : R+ → R+ is the matrix of triggering kernels varying with u and ui.
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Definitions II

The triggering kernel controls how much previous events a�ect the probability of future
events occurring, and should decay with time. We separate the kernel into an influence
term and a decay term.

Exponential triggering kernel

Decompose H = [hij] into an influence matrix A = [αij] and exponential
triggering kernel G(t) = [gij(t)], such that H = A�G and

huu′(t) = αuu′g(t), g(t) = ωe−ωt

where we have defined a global (hyper)parameter ω, ∀u, u′.
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Univariate example

Consider the univariate case, when U = 1. We get a sense for the temporal clustering inherent to the
process by comparing it to a Poisson process with the same background rate. Recall:

λ(t) = µ+
∑
ti<t

αωe−ω(t−ti)

Depicted below are the arrivals for a Hawkes (blue dots) and Poisson (yellow dots) process over a period
t ∈ [0, 500]. The time-varying intensity of the Hawkes process is shown above, where we note the
spikes accompanying each new arrival, and resulting “sawtooth” patterns.
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Figure 1: Poisson process has rate µ = 0.1. Hawkes has µ = 0.1, α = 0.5, ω = 1.
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Multivariate example
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Branching process and stability

We can interpret the Hawkes process as a branching process where each event (ti, ui) in the sequence is
either a parent, or child of a previous event.
Under this interpretation, one can show that the entries of A = [αij] give the expected children of parent j
into dimension i.
Stability. For U = 1 therefore, if α > 1, each event produces more than one child in expectation, and
the process is called unstable or nonstationary (it “blows up”). So we generally require α < 1.
For U > 1 this has the analogy to constraining the largest eigenvalue of A. We require

ρ(A)
def
= max

i
|λi(A)| < 1

to ensure stability, where λi(A) here represents the eigenvalues of A.
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Figure 2: Example unstable process (U = 1), with µ = 0.1, α = 1.1, ω = 3.
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Parameter estimation: Challenges in MLE

The log-likelihood L({(ti, ui)},Θ) has a
closed form, and we might like to do MLE as

min
Θ
−L(τ,Θ) +R(Θ)

with regularization termsR(·).
In practice, this function tends to be very
“flat” near the optimum, leading to
near-zero gradients, degenerate Hessians,
and slow or no convergence.

With strict regularization on A (for example
L1 in [9], L2 in [7], or L∗ in [10]), we can
apply sophisticated optimization machinery
(for example ADMM with an MM-step in
[10]) and achieve a sparse parameter estimate.
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Figure 3: Log-likelihood with U = 1, µ fixed.
Optimum shown as black dot.
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Parameter estimation: Bayesian MAP EM

Instead, we propose a novel method using Expectation-Maximization (EM). In particular,
we will use a Bayesian maximum aposteriori (MAP) EM approach that maximizes the
complete data log posterior

log p(Θ|τ,Q) ∝ log p(τ,Q|Θ) + log p(Θ)

where τ = {(ti, ui)} and Q = [qij] is the latent branching matrix such that qij = 1 if j is the
parent event of i.
Since Q is unknown, the EM approach finds its expected value P = [pij] based on the
current parameter estimate, maximizes the posterior with this expected value for new
estimates, and iterates until convergence.

Formally, in the E-step we compute

P(k+1) = E[Q|τ,Θ(k)]

and in the M-step we compute

Θ(k+1) = argmax
{
E[log p(τ,Q; Θ) | Q = Pk+1] + E[log p(Θ;V)]

}
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Parameter estimation: Prior

We place a Gamma prior on the influence matrix entries A = [αij]. This has nonnegative
support and is conjugate with the exponential terms in the complete data log likelihood.

Gamma(x;α, β) =
βα

Γ(α)
xα−1e−βx

We assume that each relationship (i, j) is iid, so we have the prior

p(A) =
∏
i,j

Gamma(αij; sij, tij) ⇒ log p(A) =
∑
i,j

[
(sij − 1) logαij − tijαij

]
+ C
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Parameter estimation: Summary

E-step

Compute P(k+1) = E[Q|τ,Θk] as

p(k+1)
ii =

µ
(k)
ui

µ
(k)
i +

∑i−1
j=1 α

(k)
uiujg(ti − tj)

, p(k+1)
ij =

α
(k)
uiujg(ti − tj)

µ
(k)
i +

∑i−1
j=1 α

(k)
uiujg(ti − tj)

M-step

Compute Θ(k+1) = (µ(k+1),A(k+1)), with G(t) =
∫ t
0 g(s)ds, as

µ(k+1)
u =

∑
i:ui=u p

(k)
ii

T

α
(k+1)
uu′ =

∑
i:ui=u

∑
j:uj=u′,j<i p

(k)
ij + suu′ − 1∑N

i=1
∑

j: uj=u′,j<i G(T − tj) + tuu′
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Incorporating kernel updates (univariate case)

When U = 1, we may prefer to estimate ω along with µ and α (instead of treating it as a
hyperparameter). We will again apply a Gamma prior to ω, with hyperparameters (u, v).
This gives an additional update equation for ω as:

ωk+1 =

∑
j<i P

k+1
ij + u− 1∑

j<i P
k+1
ij (ti − tj) + v

.

with µ and α identical to the multivariate case.
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Univariate case: modeling group conversations

Extract recurring group conversations (“persistent cascades”) from data using methodology
in [4].

Are these recurrent group conversations well-modeled by this self-exciting point process?

We first collapse the conversations into a single sequence of events. As a short example,
consider the following recurrent conversation pattern:

Day 1 Day 4 Day 5

a

b

d

1.1

e

1.2

1.0

c

f

1.7

1.4

a

b

d

4.6

e

4.7

4.1

c

4.2

a

b

d

5.1

e

5.2

5.0

f

c

5.9

5.2

and the corresponding sequence of events:

τ =
{
1.0, 1.1, 1.2, 1.3, 1.4, 1.7, 4.1, ..., 5.2, 5.9

}
.
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Univariate case: e�ect of regularization

Regularization increases out-of-sample predictive performance.

Shown are scatterplots of the training log-likelihood (horizontal axis) and validation
log-likelihood (vertical axis) for unregularized (left) parameter estimates and optimal
regularized (right) estimates found through grid-search on the validation set.

Introducing regularization leads to higher validation likelihoods and stronger correlation
between training and validation scores.
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Univariate case: group conversation types

Parameter estimates reveal two types of recurring group conversations.

Shown are scatterplots of parameter estimates for µ, α, ω under regularization. Size of dot
indicates size of the sequence.

Two distinct clusters of recurring conversation type are evident:

Group 1 — Low background activity (µ) but high self-excitation (α) and slow decay
(ω).
Group 2 — High background activity, moderate self-excitation, fast decay.
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Univariate case: examples

Depicted are the process events (black dots) and estimated intensities using estimated
parameters for sequences with low (top), median (middle) and high (bottom) estimated
branching ratios α̂.
The bottom sequence corresponds to the non-stationary category of conversation, its
nonstationarity reflected in the fact that the intensity is almost never at its baseline value.
We see, as expected, the top two sequences are characterized by frequent, small bursts of
activity, while the bottom sequence is characterized by long periods of dense activity.
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Multivariate case: Modeling the Influence Network

We now consider U > 1. Typically in network applications of this model, each u
corresponds to a node (e.g. stocks, neurons, gangs).
However since we are measuring influence through interpersonal communication, we
prefer to represent each undirected edge, or dyad in the network as a dimension.

We call this the Dyadic Network Hawkes model. It is straightforward to move from one
model to the other.

Map each edge in G to a node in G′, and let two nodes in G′ be connected if the
corresponding edges in G share an endpoint. G′ is called the line graph of G. We can
compute its adjacency matrix

A(G′) = B(G)B(G)T − 2I

with B(G) the incidence matrix of G.
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Multivariate case: example

a

b

c

d
e

G

B(G) =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
1 0 0 1 0
0 1 0 1 0
0 0 0 1 1

 A(G′) =


0 1 0 1 1 0
1 0 1 0 1 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 1 1 0 1
0 0 1 1 1 0
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Multivariate case: priors and stability

We construct the hyperparameters (sij, tij) for a parameter αij as

sij
def
= aijs0 + 1, tij

def
= t0

where s0, t0 and aij are hyperparameters we will select with a validation set.

In particular, we will select s0 and ω using a standard grid-search technique, and use the
line graph adjacency matrix A(G′) of the aggregated network in the validation data to
select the aij ’s.

We set t0 based on s0 in order to ensure stability, a problem which is more pronounced in
the multivariate case. We would like to choose a prior that places most of its mass on stable
sequences. The circular law states that the maximum eigenvalue of a K × K stochastic
matrix is distributed as λmax ∼ N (µK, σ2). So we can ensure, for example, µK + 2σ2 < 1
by setting

t0 >
1
2

(
Ks0 +

√
(Ks0)2 + 8s0

)
(Adapted from Linderman [2].)
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Multivariate case: parameter estimation

At left is the adjacency matrix of the line graph of the aggregated network based on the
validation data. At center is the prior on the influence matrix A, with s0 = 5. At right is
the estimated parameter values for A. Color scale is the same for the middle and right plots.

Note several critical di�erences where the model is detecting influential relationships over
edges that do not even exist in the aggregated network. The data overwhelms the prior in
these cases.
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Conclusion & Future Work

Repo: github.com/stmorse/hawkes

Ties to mobility: does influence in communication patterns relate to influence in
movement behavior?

Compare predictive ability of our MHP parameter estimation approach to existing
approaches

Quantitatively test the “strength of weak ties” hypothesis by measuring the influence (αij)
of community bridges

Extension of non-Poissonian interaction to other di�usion models, e.g. does temporal
clustering a�ect the submodularity of the influence maximization problem?

24
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Thank you! Questions?
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Data (summary)

Our data consists of call detail records (CDRs) from two European cities (City “A” and
“B”) and one Central American city (City “C”).

Call activity follows predictable population-level patterns. For example, individuals are
about half as active on weekends compared to weekdays at a population level.

City Unique IDs (×103) Calls (×103) # months Degree
(k), avg.

Calls /edge/mo.
(w), avg.avg. / mo. total avg. /mo. total

A 331.2 648.1 6,334.6 82,350.1 13 3.88 11.59
B 258.0 523.5 4,172.2 55,747.5 13 3.62 10.52
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Weekends highlighted with gray bars. The two weekday outliers correspond to national holidays.
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